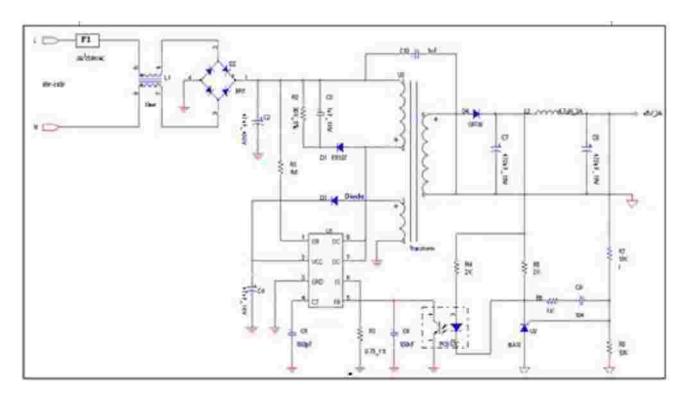
DESCRIPTION

The LR5920 is a current mode PWM switching power supply controller that specifically designed for AC/DC converter with high performance versus cost ratio. It provides continuous output power up to 12W in the broad voltage range of 85V – 265V.Its optimized and highly reasonable circuit design has made it possible to minimize the total cost of the product. This power supply controller could be used in typical flyback circuit topology to constitute simple AC/DC converter. The internal initiating circuit of 5920 has been designed with a unique means of current sink to complete the startup using the amplifying function of the power switching tube. This will significantly reduce the power consumption of the start-up resistor; and when the output power becomes smaller, 5920 will automatically lower its operating frequency to enable very low standby power consumption.

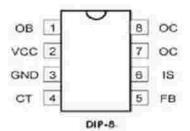
When the power tube stops, the internal circuit will turn the power tube reverse bias to greatly raise the voltage resistant capacity of OC pin.

This will ensure the safety of the power tube. The internal design of the 5920 is also provided with over-load and saturation preventive function capable of preventing disorders such as overload, transformer saturation and output short-circuit, so as to increase the reliability of the power supply. A voltage reference of 2.5V is also integrated in the 5920 to provide accurate power supply to the clock circuit, and the clock frequency may be set by external timing capacitance. Presently, standard DIP8 package and environmental friendly lead-free package in compliance with European standard can be supplied.


FEATURES

- Built-in 750V high voltage power switching tube with minimal external parts count
- Latched PWM and pulse-by-pulse current limiting inspection
- Reduced frequency at low output with standby power consumption below 0.25W
- Built-in slope and feedback compensation function
- Separate upper limit current inspection controller to handle timely the over-current and overload of the controller
- Turn off periodic bias output of the emitter to improve the voltage resistance of the power tube
- Built-in thermal protective circuit
- Complete start-up using amplification of the switching power tube to reduce the power consumption of the start-up resistor more than ten times
- Automatic VCC over-voltage limit
- Broad voltage output power up to 12W and narrow voltage output power up to 18W

Applications


- Power Adaptors(traveling chargers ,stand-alone power set)
- Internal power supply for Energy-Saving Appliances (such as electromagnetic oven, microwave oven and etc.)

TYPICAL APPLICATION

PACKAGE INFORMATION

TOP VIEW

PIN FUNCTIONS

Pin	Symbol	
1	OB-	Base Pin of the Power Tube (Enabling current input and connect to initiating resistance)-
2+	VCC-	Power Supply Pin-
3+	GND-	Ground Pin-
4.5	CT-	Oscillation Capacitance Pin. (Connect to timing capacitance)
5.1	FB.	FeedbackPin-
6.	IS-	Current Inspection Fin-
7 - 80	OC-	Output Pin (Connect to switching transformer)
		#

ABSOLUTE MAXIMUM RATINGS(Note 1)

Supply Voltage VCC	Pin Input Voltage
OC Voltage0.3-750V	Switching Current
Total Dissipation Power	Operating Temperature Range0-75
Storage Temperature Range40 - 150	Welding Temperature

ELECTRICAL CHARACTERISTICS

 $The specifications \ are \ applied \ at \ T=25 \qquad , VCC=5.5-7.5V, \ Ct=680PF, \ RS=1 \qquad , \ unless \ otherwise \ noted. (Note \ 2)$

Pa	rameter	Symbol	Conditions	Тур	Max	Units	
Output Section	on						
Max. Withstar	nding Voltage of the		IOC=10mA			V	
Switching Tube							
	tion Voltage	Vsat	Ioc=250mA		1	V	
Outpu	t Rise Time	TR	CL=1nF		75	ns	
Outpu	t Fall Time	TF	CL=1nF		75	ns	
Output Lir	niting Current		Tj=0-100	270	290	mA	
Reference Se	ction	<u> </u>		•		<u> </u>	
Reference	Output Voltage	VREF	Io=1.0mA	2.5	2.6	V	
Line	Regulation		Vcc=5.5-9V	2	20	mV	
Load	Regulation		Io=0.1-1.2mA		3	%	
Tempera	ature Stability			0.2		mV/	
Output 1	Noise Voltage	+	F=10Hz-10KHz		50	uV	
Long T	erm Stability		1000 hours @85	5		mV	
Oscillator Se							
	ing Frequency	Fosc	Ct=680PF	61	67	KHz	
	ge Stability		Vcc=5.5-9V		1	%	
	ature Stability		Ta=0-85		1	%	
Oscillator Amplitu			14-0 05	2.2	-	V	
				2.2		, <u> </u>	
Feedback Sec			ED 25W IC OV	0.6	0.65	I m / I	
Input Impedance	Pull-up Current		FB=2.5V, IS=0V	0.0	0.65	mA	
mpedance	Pull-Down	1 -		30		K?	
	Resistor						
Power Supply S	uppression Ratio		Vcc=5.5-9V	60	70	dB	
Current Sam	pling Section						
Current San	npling Threshold	Vcs		0.60	0.65	V	
Anti-Upper	Limit Current	IL		0.27	0.29	A	
Power Supply S	uppression Ratio			60	70	dB	
PWM Section	n	<u> </u>				<u> </u>	
Maximu	ım Duty Ratio	D _{M A X}		57	61	%	
Minimur	n Duty Ratio	Dmin			3.5	%	
Power Supply	y Current Section					1	
Initiating Reception Current		T T		2.4	3.2	mA	
	Static Current	+		55	80	uA	
	ic Current	IQ	Vcc=8V	3.0	3.3	mA	
	-up voltage	+ +		8.8	9.0	V	
		├		4.6	4.8	V	
Oscillator	Turn-off Voltage			4.0	4.0	v	

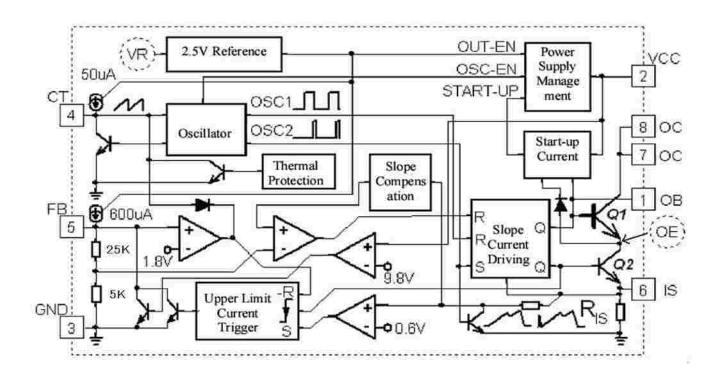
ELECTRICAL CHARACTERISTICS

The specifications are applied at T=25 , VCC=5.5-7.5V, Ct=680PF, RS=1 , unless otherwise noted.(Note 2)(continued)

Re-enabling voltage		3.6	3.8	4.0	V
Over-Voltage Limiting Threshold		9.5	10	10.5	V

Note1: Stresses beyond those listed under Absolute Maximum Ratings may cause

permanent damage to the device. Exposure to any Absolu Maximum Rating condition


for extended periods may affect device reliability and lifetime

Note2: The 5920 is guaranteed to meet performance specifications from 0 to 70

Specifications over the -40 to 85 operating temperature range are assured by

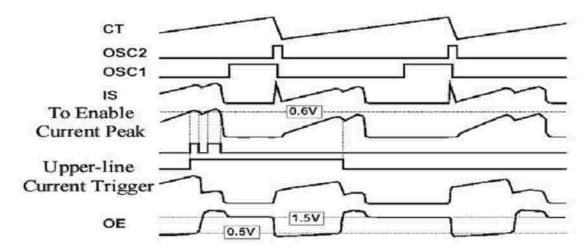
design, characterization and correlation with statistical process controls.

BLOCK DIAGRAM

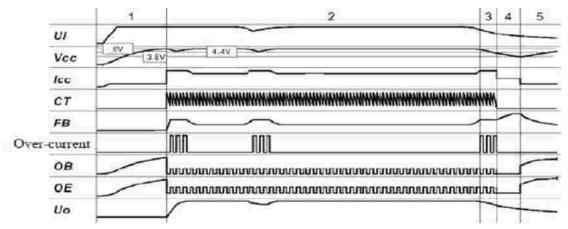
OPERATION (Refer to Block Diagram)

In the start-up stage, when power is on, VR is closed; the pull-up current source FB is closed; OE inputs enabling current from power tube to VCC; OB controls the base current of the power tube, limits the collector current of the power tube (i.e. 5920 initiates the reception current), so as to ensure the safety of the power tube; when VCC voltage raises up to 8.8 V, the enabling stage ends and it goes into the normal stage.

In the normal stage, VCC voltage should be maintained at 4.8V to 9.0V, VR outputs 2.5V reference; FB pull-up current source is opened; the oscillator output OSC1 decides the maximum duty ratio, output OSC2 tries to trigger the power into open period, and the screened power tube turns on the current peak; if FB is below 1.8V (approximately between 1.2V and 1.8V), the oscillator period will then be inc ed, the smaller


the FB is, the wider the oscillator period will be, until the stop of the oscillator (this feature will lower the stand-by power consumption of the switch power source); if the external feedback intends to make VCC higher than 10V, the internal circuit feedback to FB will stabilize VCC at 9.8V (with this feature, the internal circuit rather than the external feedback circuit will be used to stabilize the output voltage, but the stabilizing accuracy may be low); in the open period, OB supplies base current to power tube, OE pulls down the emitter of the power tube to IS, and the OB uses the slope current driving (i.e. the OB open current is the function of IS, when IS = 0V, OB open current is approximately 40mA, then the OB open current will increase along with IS linearly, when IS raises to 0.6V, the OB open current is approximately 100mA, this feature will effectively utilize the output current of OB and lower the power

consumption of 5920), if IS detects the specified current of FB, it goes into close period; in the close period, OB pulls down, the power tube may not be turned off immediately, but OE clamps on 2.0V (after the power tube turns off, the base will be reverse bias and the voltage withstanding capacity is increased); in the open or close period, if it detects the current exceeding upper limit of the power tube, then the upper limit flip-flop will be put at the preferential position, forcing FB to decrease and the duty ratio will turn smaller, so that the power tube and transformer will be protected; at the beginning of next close period edge or if FB is below 1.8V, the upper limit flip-flop will reset. Besides, the built-in heat


protection of 5920 will widen the oscillator period when the internal temperature is above 125 to ensure the temperature of 5920 will not exceed 135; the built-in slope compensation will stabilize the open/close period when 5920 is at high duty ratio or in continuous current mode.

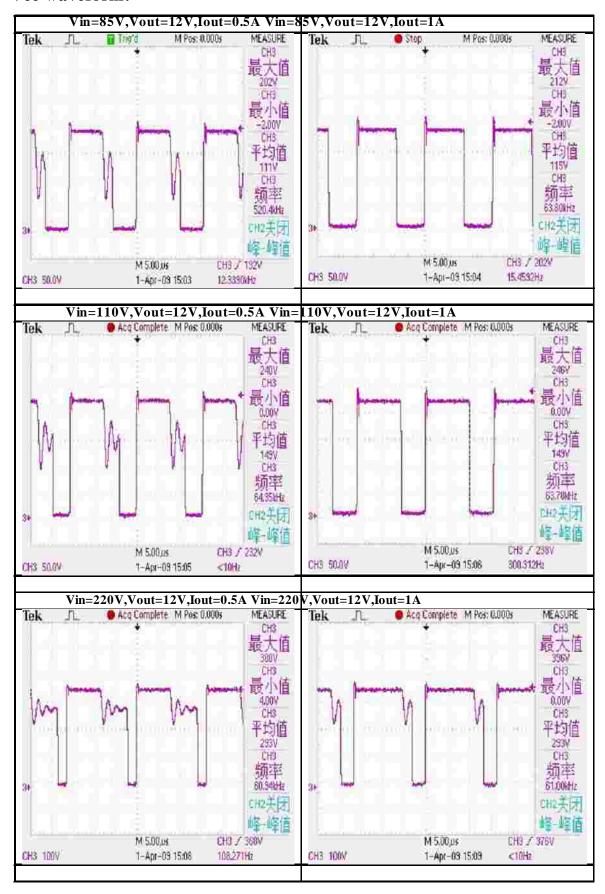
When VCC lowers to about 4.6V, the oscillator will be closed, OSC1 and OSC2 will be at low level, and the power source will be maintained at close period; when VCC goes on lowering to about 4.2V, 5920 will enter the enabling stage again.

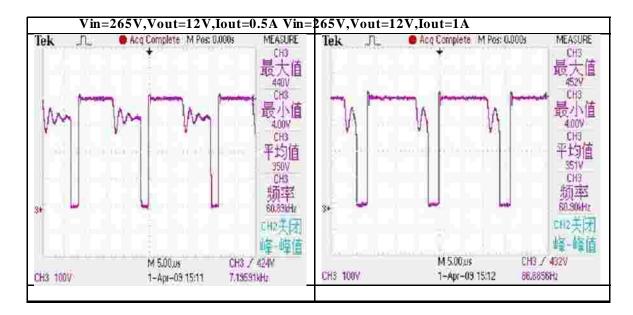
Normal Stage Switching Cycle Oscillogram

Global Oscillogram

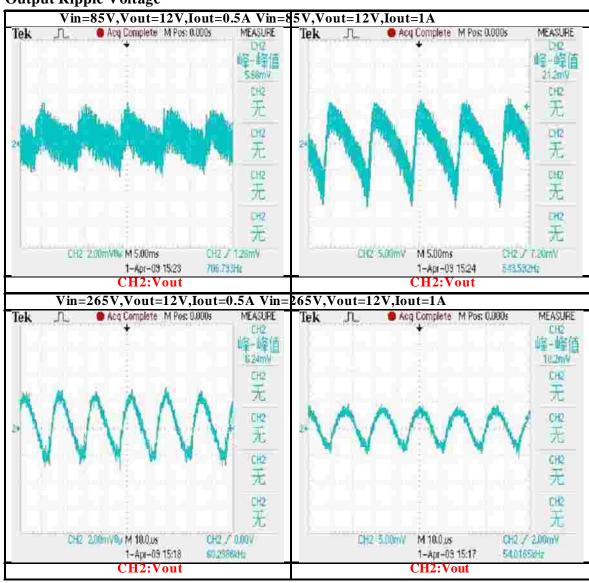
TEST DATA

LR5920 (12**V**)

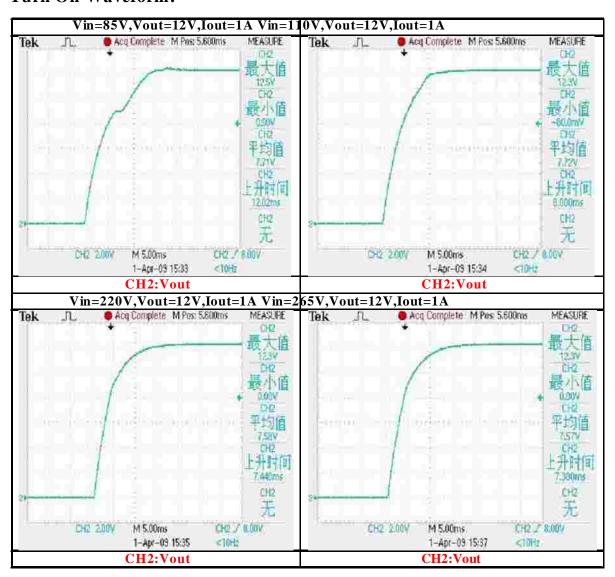

V_{IN}	Pin	Vout	Iout	\mathbf{v}_{cc}	Vor	Pour	?	OCP	OPP	Average	CEC
(V_{AC})	(W)	(V)	(A)	(V)	(mVp.p)	(W)	(%)	(A)	(A)	?(%)	Standerd
			_			_					?(%)
	0.1	12.1	0	5.36		0					
0037	3.2	12.1	0.2	6.64		2.4	75.0				
90Vac	7.6	12.1	0.5	6.64		6.1	80.3	1.07	1.36	79.05	
	12.0	12.1	0.8	6.64		9.7	80.8				
	15.1	12.1	1.0	6.64		12.1	80.1				
	0.1	12.1	0	5.28		0	1				
	3.1	12.1	0.2	6.70		2.4	77.4				
100Vac	7.5	12.1	0.5	6.70		6.1	81.3	1.13	1.45	80.35	
	11.9	12.1	0.8	6.70		9.7	81.5				
	14.9	12.1	1.0	6.70		12.1	81.2				
	0.1	12.1	0	4.96		0	1				
	3.0	12.1	0.2	6.96		2.4	80.0				
240Vac	7.3	12.1	0.5	6.96		6.1	83.5	1.69	2.13	82.95	
	11.5	12.1	0.8	6.96		9.7	84.3				
	14.4	12.1	1.0	6.96		12.1	84.0				
	0.1	12.1	0	4.88		0	/				
	3.0	12.1	0.2	7.04		2.4	80.0				
265Vac	7.4	12.1	0.5	7.04		6.1	82.4	1.72	2.17	82.35	
	11.6	12.1	0.8	7.04		9.7	83.6				
	14.5	12.1	1.0	7.04		12.1	83.4				

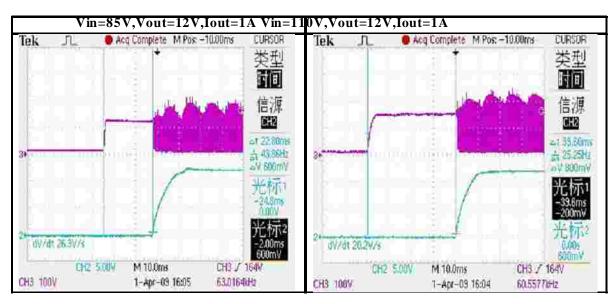

Output Voltage and Output Ripple Voltage

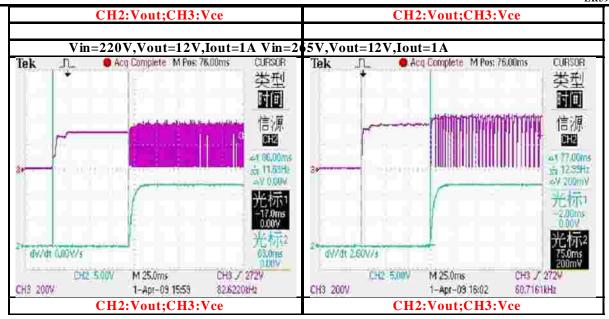
		85V		110V	135V		
Vin(V) Iout(A)	Vout(V)	Vripple(mV)	Vout(V)	Vripple(mV)	Vout(V)	Vripple(mV)	
0.25	12.18	5.00	12.18	3.52	12.18	3.76	
0.50	12.18	9.00	12.18	5.36	12.18	5.84	
0.75	12.18	14.00	12.18	8.00	12.18	7.68	
1.00	12.18	31.20	12.18	11.60	12.18	8.40	
Vin(V)	180V			220V	265 V		
Iout(A)	Vout(V)	Vripple(mV)	Vout(V)	Vripple(mV)	Vout(V)	Vripple(mV)	
0.25	12.18	4.32	12.18	5.12	12.18	5.36	
0.50	12.18	6.40	12.18	6.16	12.18	5.92	
0.75	12.18	7.00	12.18	7.28	12.18	6.40	
1.00	12.18	9.00	12.18	8.48	12.18	7.76	


Test Waveform:

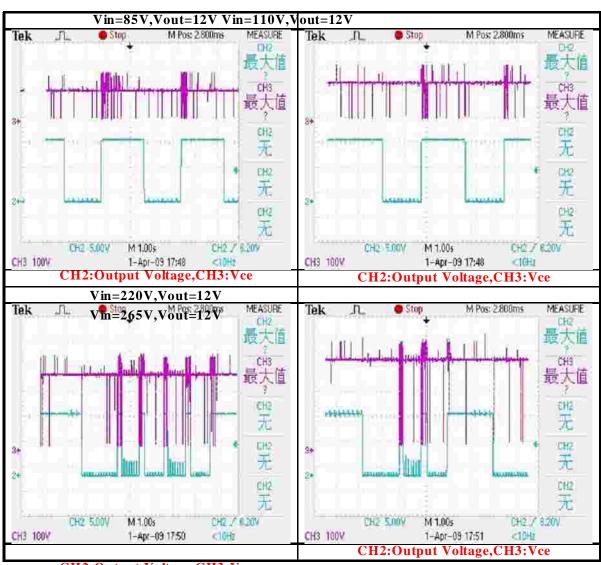
Vce waveform:



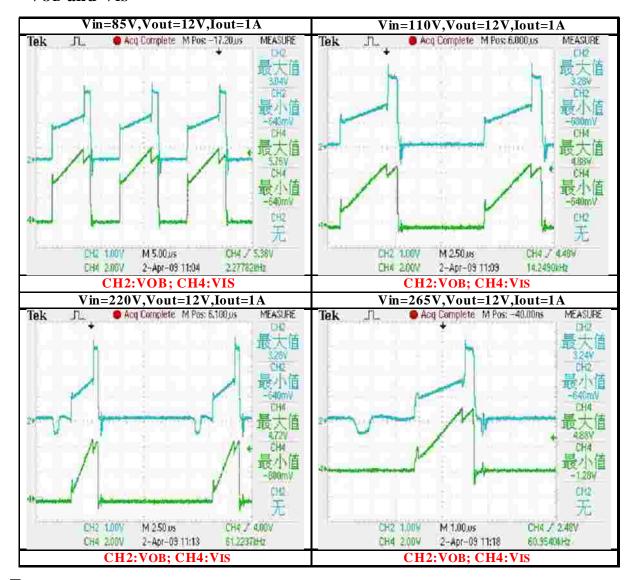

Output Ripple Voltage



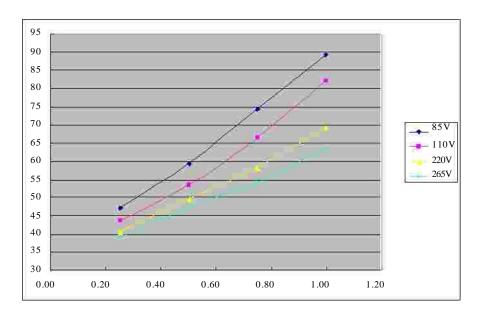
Turn On Waveform:



Vce and Vout

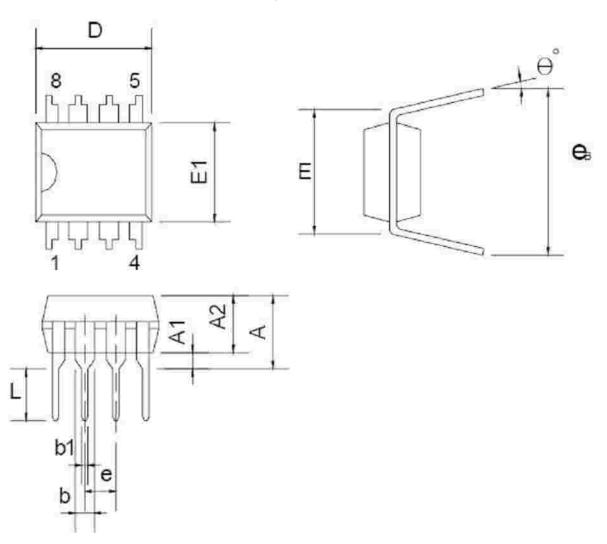


Short Output:



CH2:Output Voltage, CH3:Vce

Vob and Vis



Temperature:

PACKAGE INFORMATION

DIP-8

Dimensions

Symbol		Millimeter		Inch				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
A			5.334			0.210		
A1	0.381			0.015				
A2	3.175	3.302	3.429	0.125	0.130	0.135		
b		1.524			0.060			
b1		0.457			0.018			
D	9.017	9.271	10.160	0.355	0.365	0.400		
Е		7.620			0.300			
E1	6.223	6.350	6.477	0.245	0.250	0.255		
Е		2.540			0.100			
L	2.921	3.302	3.810	0.115	0.130	0.150		
ев	8.509	9.017	9.525	0.335	0.355	0.375		
?°	0°	7°	15°	0°	7°	15°		